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Consideration of a general power law, rather than a Yukawa form, for the 
electrostatic potential suggests a generalization of Maxwell's equations contain- 
ing no dimensional parameters. There may be deviations from Coulomb's law 
even though plane waves propagate in vacuum without dispersion. In considering 
possible macroscopic deviations from Maxwellian electrodynamics, one must 
bear in mind the fact that there are different and inequivalent ways to parametrize 
deviations. 

M o d e r n  d iscuss ions  o f  poss ib le  m a c r o s c o p i c  devia t ions  f rom 
C o u l o m b ' s  law have genera l ly  cons ide red  as an a l ternat ive  the  poss ib i l i ty  
tha t  the q u a n t u m  of  the  e lec t romagne t i c  field might  have a nonvan i sh ing  
rest mass  ( G o l d h a b e r  and  Nie to ,  1971; M u r p h y  and  Burman,  1978). 
M a x w e l l ' s  equa t ions  w o u l d  then  be r ep laced  by  those  o f  Proca (1936). Fo r  
a po in t  charge  Q at rest, these  yie ld  the Y u k a w a  express ion  for  the  e lectros-  
ta t ic  po ten t i a l ,  V = (Q/r) exp(-r/d), where  d is re la ted  to the  p h o t o n  rest 
mass  m by d = h/mc. Elec t romagne t i c  waves in vacuum would  then have 
the d i spe r s ion  re la t ion  

eo = c ( k 2 +  1/d2) '/2 (1) 

Wi th  this a s sumpt ion ,  c lass ical  e lec t ros ta t ic  exper iments ,  observa t ions  o f  
magne tos t a t i c  p h e n o m e n a  (such as p l ane t a ry  magne t ic  fields),  or  da t a  on 
wave p r o p a g a t i o n  can be used  to set l imits  on the  p a r a m e t e r  m. I f  m is 
sufficiently small ,  mak ing  d large in compa r i son  with terrestr ia l  d is tances ,  
then  l abo ra to ry  expe r imen t s  will no longer  be helpful .  In  fact,  obse rva t ions  
o f  a s t rophys ica l  p h e n o m e n a  can be used  to give the l imit  d - - 1 0 0 p c ,  
c o r r e s p o n d i n g  to m -< 10 -58 g ( M u r p h y  and  Burman,  1978). 
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The addition of a nonvanishing photon mass term seems the most 
natural way to extend Maxwell 's theory in the context of  our modern 
understanding of quantum field theory. But this is, of course, not the only 
way to account for deviations from Coulomb's  law should they be found. 
In particular, it is possible to find a modification of Maxwell 's theory in 
which plane waves propagate without dispersion in vacuum, but in which 
there is a deviation from the inverse-square law. One such theory can be 
developed from an elementary model which Maxwell (1891) used to discuss 
the experimental evidence for Coulomb's  law. 

Instead of the Yukawa form for the potential, we consider the 
expression 

V =  Cr -~ (2) 

For ce = 0 this will of  course become the usual expression for the Coulomb 
potential. 

We can find a partial differential equation satisfied by (2) by calculating 
V V and V 2 V and eliminating C and r among these expressions. The result 
is a nonlinear generalization of the Laplace equation, 

V V 2 V  = [,~/(1 + a)J(V V) 2 

which can also be written as 

V 7 .  E = [ -c~ / (1  + a ) ] E  2 (3) 

The latter form suggests an extension to an analogue to the full set of  
Maxwell 's equations. I f  the field Fu, and the potential A~ are related in 
the usual way, the simplest such extension would seem to be 

=-/3A (F~F )/(&A ) (4) 

A ~ = V, F ~ F  ~" = 2(B 2 -  E2), and F~,, = A,,~ - A ~ , ,  with the metric + - - - 
The a and/3  are related by/3  = a / 2 ( l + a ) .  There is no claim that this is 
a unique form reducing to (3) for static fields. 

It is instructive to compare (4) with the Proca system, which, with the 
same relation between A~ and F~,., can be written 

F,~f = A ~ / d  2 (5) 

Equation (5) has the immediate consequence that A.~ = 0, so that we obtain 
the wave equation A.~f + At'~ d 2 = 0. On the other hand, taking the divergence 
of (4 )y ie lds  the more complex condition (KA") , .  =0 ,  where K is the 
invariant F ~ F ~ /  AoA ~. 

With the Proca system there would be deviations from Maxwell 's theory 
for phenomena on scales of  length significantly larger than d. The situation 
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is different for the system (4). I f  we denote by L a characteristic distance 
within which A~, varies significantly, then from (4) we can write the order-of- 
magnitude equation 

F~ ~ = - A ~ / ( L 2 / ~ )  

In this case the scale of  length at which non-Maxwellian features would be 
seen is L/I~I 1/2. This is no longer a constant, but a length dependent upon 
the variation of  A~ itself. I f  lal<< 1, so that Coulomb's  law is a good 
approximation,  then also 1/31<< 1. Then this length L/ll3] 1/2 will always be 
much greater than the distance L over which there is significant change in 
A~. This means that there is no particular scale on which we could expect 
the solutions of  (4) to differ qualitatively from those of the Maxwell system. 
(There might be exceptions to this statement among cases in which A~ is 
null, so that K is infinite.) 

Note that there are theories, such as that of  Born and Infeld (1934), 
in which there are significant deviations from Maxwell 's theory at very small 
distances. The parameter  characterizing the deviation in the Born-Infeld 
theory is a characteristic field strength, which would be expected to be on 
the order of  that at the surface of a classical electron. Thus, the theory 
defines a length scale on the order of the classical electron radius, and 
non-Maxwellian effects could be expected only at distances comparable 
with that length or smaller. The Proca system differs from that of  Maxwell 
only on a sufficiently large scale defined by the photon rest mass. The 
novelty of  the system (4) in comparison with these well-known theories is 
that the parameter  characterizing deviations from Maxwellian electrody- 
namics [c~ in (2) or /3 in (4)] is dimensionless, so that (as in Maxwell 's 
theory) there is no constant length scale picked out. 

A specific situation of considerable interest is that of  plane wave 
propagation.  Since the usual electromagnetic plane waves satisfying F~v ~ = 0 
have F ~ F  ~ = 0 throughout space-time (and a gauge can be chosen so that 
A~ is not null), we see that such waves will satisfy (4) as well. Thus, there 
are plane waves which propagate without dispersion in this theory, even 
though Coulomb's  law does not hold at any length scale. Of  course, there 
will be other, more complex, solutions to the new equations as well. 

[The fact that plane waves satisfy (4) is an extension of a result proved 
earlier for a large class of  Lorentz- and gauge-invariant theories (Murphy, 
1978). It means that this new system of equations also will not give a 
cosmological "tired light" effect.] 

The system of field equations introduced here is not put forward as a 
serious alternative to the usual Maxwell theory. (Among other things, the 
fact that it has not been possible to find a Lagrangian for the system counts 
against it.) The point is rather to demonstrate that one must exercise some 
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care in analyzing observations to test the validity o f  conventional  electrody- 
namics. There is an infinite number  of  ways to parametrize a theory used 
to analyze such observations,  and these are not all equivalent. For  example,  
one might in principle attempt to detect a time delay between different 
spectral components  o f  radiat ion emitted f rom a distant galaxy. I f  such a 
delay were found,  it could be attributed to the vacuum dispersion p roduced  
by a pho ton  rest mass and described by (1). I f  no such delay were detected, 
one could place an upper  limit on the pho ton  rest mass in the Proca theory. 
But no limit at all would  be placed upon  the paramete r /3  in the system 
(4). In order  to measure,  or to place limits upon,  fl in this quite different 
theory,  other  experiments,  such as the classic one o f  Pl impton and Lawton 
(1936), have to be appealed to. 

There is no unique covering theory for Maxwell ian electrodynamics.  
This should be kept in mind even as one uses the most  plausible covering 
theories for compar ison  with observations. 
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